Stüzen Fundament

POS

STF

Stütze Reaktion:

	Auflager Reaktion (Lager 1)				
POS	Av (kN)	Hy (kN)	Mz (kNm)	Hz (kN)	My (kNm)
S1 – S7 Bauzustand	555,40	50,20	461,50	•	37,30
S5_Anwendung	1.151,30	10,70	44,60	847,20	1.336,10

1)	Anwendung	Kontrolla
	AHWEHUIIIP	COHHORE

a= 1,28 m $N_M=My/a=$ 1.043,83 kN $N_1=Av/2=$ 575,65 kN

Gesamte Belastung auf einer Seite:

$$N=N_1+N_M=$$
 1.619,48 kN

Gewählt Ankerbolzen: PPM52

 $N_{Rd} = 938,00 kN$ $V_{Rd,0} = 219,00 kN$ $t_{grout} = 70,00 mm$

 $n1=N/N_{Rd}=$ 1,73

Gewählt:

n1= 4,00

Gesamt:

n= 8,00

Interaktion:

Lasten auf einen Ankerbolz

NEd=N/n1= 404,87 kN Ved=Hz/n= 105,66 kN

$$\boxed{\frac{N_{Ed}}{1,4N_{Rd}} + \frac{V_{Ed}}{V_{Rd}} \le 1,0}$$

Interaktion: 0,79

2) Bauzustand Kontrolle

b= 1,28 m $N_M=Mz/b=$ 360,55 kN $N_1=Av/2=$ 277,70 kN

Gesamte Belastung auf einer Seite:

 $N=N_1+N_M=$ 638,25 kN

N_{Rd}= 938,00 kN

 $V_{Rd,0}$ = 215,00 kN t_{grout} = 70,00 mm

 $n=N/N_{Rd}=0,68$

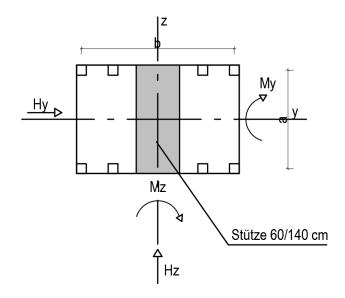
Gewählt:

n1= 2,00

Gesamt:

n= 4,00

Interaktion:


Lasten auf einen Ankerbolz

NEd=N/n1= 319,12 kN Ved=Hy/n= 12,55 kN

 $\frac{N_{Ed}}{N_{Rd}} + \frac{V_{Ed}}{V_{Rd}} \le 1,0$

Interaktion: 0,40

Gewählt: Ankerbolzen PPM52 - 8 Stück / Stütze

Gewählt:

Ankerbolzen: 8 x PPM52L Stützenschuhe: 8 x PEC52

PPM 52 L - Daten

Table 2. Positioning of PPM L bolts in base structure.

Anchor Bolt	c _{min} [mm]	s _{min} [mm]	h _{min} [mm]	h _{ef} [mm]	k [mm]
PPM 30 L	120	130	600	502	13
PPM 36 L	140	160	655	558	12
PPM 39 L	150	180	755	677	13
PPM 45 L	160	200	865	767	13
PPM 52 L	180	280	990	890	15
PPM 60 L	180	280	1155	1055	15

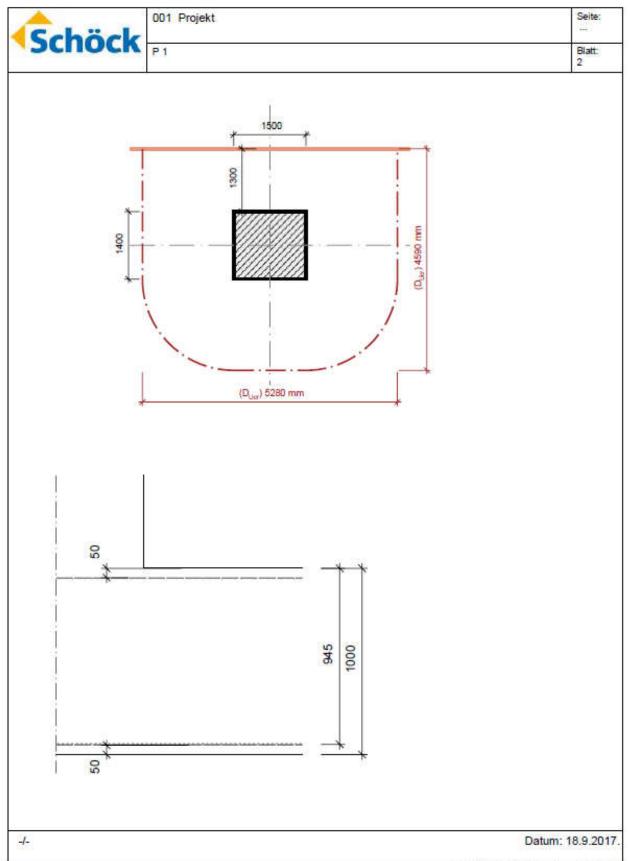
Figure 6. Installed PPM L High-Strength Anchor Bolt.

Table 5. Design values for tensile or compressive resistance of individual PPM High-Strength Anchor Bolt. (Steel strength). The resistances are determined in accordance with ETAG 001.

		PPM 30	PPM 36	PPM 39	PPM 45	PPM 52	PPM 60
N _{Rd} N _{Rd.0}	[kN]	299	436	521	697	938	1260

Table 6. Design values for shear resistance of individual PPM High-Strength Anchor Bolt. (Steel strength). The resistances are determined in accordance with EN 1993-1-8, section 6.2.2 (7).

Anchor Bolt	V _{Rd} [kN] Final Stage	V _{Rd.0} [kN] Erection Stage	t _{Grout} [mm]
PPM 30	89	53	50
PPM 36	130	88	55
PPM 39	155	104	60
PPM 45	207	144	65
PPM 52	219	215	70
PPM 60	225	225	80


NOTE 1: Resistances V_{Rd} and $V_{Rd,0}$ in Table 6 are valid for height of joint equal to t_{Grout} . **NOTE 2:** The base plate design must meet the requirements for the anchor bolt capacity.

NOTE 3: Resistances shown in Tables 5 and 6 are without simultaneous action of axial and shear load. For combined resistance, see section 2.2 of this manual.

 $\begin{array}{lll} \mbox{Vertikale Last Stütze:} & \mbox{Vs=1283 kN} \\ \mbox{Eigengewicht Fundament:} & \mbox{Vf=32} \\ \mbox{Gesamt:} & \mbox{V}_{\mbox{Ed}} = 1315 \mbox{ kN} \\ \end{array}$

001 Projekt	Seite:
Schöck	Blatt:
Einwirkung Durchstanzlast Dynamischer Anteil Bodenpressung Lasterhöhungsfaktor Abmessung - Randstütze Rechteck Stützenbreite Stützendicke Plattendicke Statische Nutzhöhe Betondeckung oben/unten Material Beton Stahl Bewehrungsgrad A = 62.8 cm²/m (~a20/50 mm): A = 62	$V_{Ed} = 1315 \text{ kN}$ $V_{Ed,dyn} = 0 \text{ kN}$ $q_B = 0 \text{ kN/m}^2$ $\beta = 1,40$ $a = 1500 \text{ mm}$ $b = 1400 \text{ mm}$ $h = 1000 \text{ mm}$ $d = 945 \text{ mm}$ $co; cu = 50; 50 \text{ mm}$ $C35/45 (f_{ck} = 35,0 \text{ N/mm}^2)$ $B500 (f_{ck} = 500 \text{ N/mm}^2)$ $\rho = (\rho_x \cdot \rho_y)^{1/2} = (0,66 \cdot 0,66)^{1/2} = 0,66 \%$ $8 \text{ cm}^2/\text{m} (\sim 20/50 \text{ mm})$
$A_{sx} = 62.8 \text{ cm}^2/\text{m} (\sim \emptyset 20/50 \text{ mm}); A_{sy} = 62$ Bewehrung muss über den äußeren Rundschn	
Durchstanznachweis nach EC2 + ETA Faktor κ Einfluss der Plattendicke Faktor C _{Rd,c} Minimale Betontragfähigkeit Tragfähigkeit Beton	$\begin{split} \kappa &= \text{min}\{1 + (200/\text{d})^{1/2}; \; 2\} = \; 1,46 \\ \eta &= \; 1,00 \\ C_{\text{Rd,c}} &= \; 0,18/\text{y}_{\text{c}} = \; 0,12 \\ v_{\text{min}} &= \; (0,0375/\text{y}_{\text{c}}) \cdot \kappa^{3/2} \cdot \text{fck}^{1/2} = \; 260,9 \; \text{kN/m}^2 \\ v_{\text{Rd,c}} &= \; \text{max}\{C_{\text{Rd,c}} \cdot \kappa \cdot (\rho \cdot f_{\text{ck}})^{1/3}; \; v_{\text{min}}\} = \; 500,2 \; \text{kN/m}^2 \end{split}$
Stützenrand u ₀ Rundschnittslänge Tragfähigkeit Beton Tragfähigkeit Beton	$u_0 = 4,300 \text{ m}$ $v_{Rd,c,max,u0} = 0,5 \cdot v \cdot f_{cd} = 6020,0 \text{ kN/m}$ $v_{Rd,c,max,u0} = v_{Rd,c,max,u0} \cdot d \cdot u_0 = 24462,5 \text{ kN}$
Kritischer Rundschnitt u _{crit} Kritischer Abstand (iterativ) Rundschnittslänge Rundschnittfläche Aufzunehmende Querkraft Tragfähigkeit Beton Maximale Tragfähigkeit	a_{crit} =2,0d = 1890 mm u_{crit} = 12,838 m A_{crit} = 22,703 m ² $V_{Ed,red}$ = (V_{Ed} - q_{B} : $A_{2,0d}$)· B = 1841,0 kN $V_{Rd,c,crit}$ = $v_{Rd,c}$: d : $u_{2,0d}$: 2 : d : d : $a_{2,0d}$ = 6068,4 kN $V_{Rd,max,crit}$ = $V_{Rd,c,crit,(CRde=0,12)}$:1,5 = 9102,6 kN
V _{Ed,red} =1841,0kN ≤V _{Rd,o,crit} =6068,4kN Keine Durchstanzbewehrung erforderlich!	
-1-	Datum: 18.9.20

Schöck BOLE Version: 2.12.00

Schöck BOLE Version: 2.12.00